Cryptography Stocks List
Symbol | Grade | Name | % Change | |
---|---|---|---|---|
BUGG | B | Global X Cybersecurity ETF | 0.00 | |
HACK | B | Beta Cyber ETF Units | 2.64 | |
YPB | B | YPB Group Ltd | 0.00 | |
SEN | B | Senetas Corporation Limited | 0.00 | |
DDT | B | DataDot Technology Ltd. | 0.00 | |
WHK | C | Whitehawk Limited | 0.00 | |
GTH | F | Gathid Ltd | 0.00 | |
HCL | F | HighCom Limited | 0.00 | |
DRO | F | DroneShield Ltd | 0.00 |
Related Industries: Computer Systems Internet Content & Information Security & Protection Services Software - Application Software - Infrastructure
- Cryptography
Cryptography or cryptology (from Ancient Greek: κρυπτός, translit. kryptós "hidden, secret"; and γράφειν graphein, "to write", or -λογία -logia, "study", respectively) is the practice and study of techniques for secure communication in the presence of third parties called adversaries. More generally, cryptography is about constructing and analyzing protocols that prevent third parties or the public from reading private messages; various aspects in information security such as data confidentiality, data integrity, authentication, and non-repudiation are central to modern cryptography. Modern cryptography exists at the intersection of the disciplines of mathematics, computer science, electrical engineering, communication science, and physics. Applications of cryptography include electronic commerce, chip-based payment cards, digital currencies, computer passwords, and military communications.
Cryptography prior to the modern age was effectively synonymous with encryption, the conversion of information from a readable state to apparent nonsense. The originator of an encrypted message shares the decoding technique only with intended recipients to preclude access from adversaries. The cryptography literature often uses the names Alice ("A") for the sender, Bob ("B") for the intended recipient, and Eve ("eavesdropper") for the adversary. Since the development of rotor cipher machines in World War I and the advent of computers in World War II, the methods used to carry out cryptology have become increasingly complex and its application more widespread.
Modern cryptography is heavily based on mathematical theory and computer science practice; cryptographic algorithms are designed around computational hardness assumptions, making such algorithms hard to break in practice by any adversary. It is theoretically possible to break such a system, but it is infeasible to do so by any known practical means. These schemes are therefore termed computationally secure; theoretical advances, e.g., improvements in integer factorization algorithms, and faster computing technology require these solutions to be continually adapted. There exist information-theoretically secure schemes that probably cannot be broken even with unlimited computing power—an example is the one-time pad—but these schemes are more difficult to implement than the best theoretically breakable but computationally secure mechanisms.
The growth of cryptographic technology has raised a number of legal issues in the information age. Cryptography's potential for use as a tool for espionage and sedition has led many governments to classify it as a weapon and to limit or even prohibit its use and export. In some jurisdictions where the use of cryptography is legal, laws permit investigators to compel the disclosure of encryption keys for documents relevant to an investigation. Cryptography also plays a major role in digital rights management and copyright infringement of digital media.
Popular Now
Recent Comments
- TRTCryptoCraig on Bad Quotes for 28 May...
- TraderMike on Bad Quotes for 28 May...
- TraderMike on Market Recap for Friday, May 31, 2024
- PleasantTurtle699 on Market Recap for Friday, May 31, 2024
- TraderMike on Market Recap for Friday, May 31, 2024
From the Blog
Featured Articles